
by Marcio “pimps” Almeida

DOOMPDF
From HTML Injection to RCE

$ whoami
• Director & Co-Founder at Tanto Security (https://tantosec.com)

• CTF Player (TheGoonies) (https://thegoonies.github.io)

• Bug Hunter (when I have the patience, 0-days and time to do that)

• Twitter: @marcioalm (https://twitter.com/marcioalm)

• Github: pimps (https://github.com/pimps)

• Linkedin: marcioalmeida (https://linkedin.com/in/marcioalmeida)

https://tantosec.com
https://thegoonies.github.io
https://twitter.com/marcioalm
https://github.com/pimps
https://linkedin.com/in/marcioalmeida

Agenda

• Introduction to PHP Deserialisation

• Introduction to Phar Metadata Deserialisation

• Introduction to Polyglot Files

• Past Vulnerabilities on DOMPDF

• The 0-day Vulnerability (CVE-2022-41343)

• PoC||GTFO

How Serialisation Works in PHP?
<?php
class Test
{
 public $name = "Pimps";
 public $age = 36;
 public $secret = 0;
 public $hobbies = array("bughunting", "hackingthings");
 public $bug_hunter = True;
}
$object = new Test();
$serialised = serialize($object);
echo $serialised;
?>

Serialised Structure

•O:Length of Object name :"Class Name":Number of Properties in Class:
{Properties} - O:4:"Test":5

• { data } - Denotes the data structure of the object with the 5 properties - $name,
$age, $secret, $hobbies, $bug_hunter

• s:Length of the String:"String Value"; - s:4:"name";s:5:"Pimps";

• i:Integer; - s:3:"age";i:36;

• i:Integer; - s:6:"secret";i:0;

• a:Number of Elements:{Elements} - a:2:{i:0;s:10:”
bughunting”;i:1;s:13:"hackingthings";}

• b:boolean; - s:10:"bug_hunter";b:1;

% php Test.php
O:4:"Test":5:{s:4:"name";s:5:"Pimps";s:3:"age";i:36;s:6:"secret";i:0;s:7:"hobbies";a:2:
{i:0;s:10:"bughunting";i:1;s:13:"hackingthings";}s:10:"bug_hunter";b:1;}

How Deserialisation Works on PHP
% php Deserialise.php

object(__PHP_Incomplete_Class)#1 (6) {

 ["__PHP_Incomplete_Class_Name"]=>

 string(4) "Test"

 ["name"]=>

 string(5) "Pimps"

 ["age"]=>

 int(36)

 ["secret"]=>

 int(0)

 ["hobbies"]=>

 array(2) {

 [0]=>

 string(10) "bughunting"

 [1]=>

 string(13) "hackingthings"

 }

 ["bug_hunter"]=>

 bool(true)

}

<?php
$object = 'O:4:"Test":5:
{s:4:"name";s:5:"Pimps";s:3:"age";i:36
;s:6:"secret";i:0;s:7:"hobbies";a:2:
{i:0;s:10:"bughunting";i:1;s:13:"hacki
ngthings";}s:10:"bug_hunter";b:1;}';
$unserialized = unserialize($object);
echo var_dump($unserialized);
?>

PHP Magic Methods
Most useful for exploitation

•__toString() - Invoked when object is converted to a string. (by echo for example)

•__destruct() - Invoked when an object is deleted. When no reference to the deserialised

object instance exists, __destruct() is called.

•__wakeup() - Invoked when an object is unserialised. automatically called upon object

deserialisation.

•__call() - will be called if the object attempts to call an inexistent function

Example of a Deserialisation Gadget (Dompdf)
Delete any arbitrary file

Other PHP Magic Methods
That can potentially be useful…

•__set() - called if the object try to access inexistent class variables

•__isset()

•__invoke()

•__unset()

•__set_state()

•__callStatic()

•__sleep() - called when an object is serialized (with serialize)

•__clone()

•__get() - called if the object try to access inexistent class variables

•__debugInfo()

•__construct() - Invoked when an object is created (constructor)

Phar File Format
• Phar (PHP Archive) files can be used to package PHP applications and PHP

libraries into one archive file.

• Phar files contain metadata about the files in the archive. This metadata is stored
in a serialised format

• Phar files can be called using the following URI: phar://path/to/phar##innerfile

• The *.phar extension isn't checked when used in a phar:// stream, and PHP scans
the file for the stub signature, making it a good candidate for polyglot file attacks…
(More about that in a minute)

• By design, the Phar’s serialised metadata automatically gets unserialised! (this
behaviour changed on PHP 8.0+)

The Structure of a PHAR archive
stub/manifest/contents/signature

Phar Deserialisation
• Published by Sam Thomas (Blackhat 2018) but initially discovered by

Orange Tsai (Independently). Orange made a CTF challenge debuting this
technique on HitconCTF 2017 that was named baby^h-master-php-2017,
it got 0 solves during the event.

• This technique abuses the fact that the metadata of a phar archive is a
serialised PHP object and it is automatically deserialised by the phar://
stream parsing.

• As such an attacker could perform PHP object injection without the need
of a vulnerable unserialize() function by uploading a phar file to disk and
simply accessing it via phar:// (This is a big deal!).

Requirements for Phar Deserialisation

• The ability to upload a malicious PHAR file to the target system and the path to the file
to be known.

• An application with a well known gadget chain to be loaded (ex: monolog, laravel, etc)

• Attacker control to any of the following system functions to invoke with phar://

How to create a malicious PHAR archive
<?php
// create the deserialisation payload
$payload = new MyMaliciousPHPObject();
$payload->setSomeAttribute(‘somethingMalicious’);

// create a new Phar archive
@unlink("payload.phar");
$phar = new Phar('payload.phar');
$phar->startBuffering();
$phar->addFromString('test.txt', 'text');
$phar->setStub('<?php __HALT_COMPILER(); ?>’);

//set payload (here is the money shot)
$phar->setMetadata($payload);
$phar->stopBuffering();
?>

Polyglot Files
What they are? Where they live? What they eat?

• Polyglots, in a security context, are files that are a valid form of multiple
different file types. For example a PDFTAR is both, a valid PDF and a valid
TAR archive containing a valid file structure and headers for both types.

• Polyglot files are often used to bypass protection based on file types.
Often used to bypass upload file filters and validations with one of the
polyglot types and use the other type for some kind of shenanigans.

• For Example, a very common type of polyglot file is a Phar-JPEG file
where the Phar type is used to carry out PHP injection attacks and the
JPEG type used to bypass Image upload and validation on PHP
applications.

PHPGCC - PHP Generic Gadget Chains
https://github.com/ambionics/phpggc

• Considered as the “YSOSerial” for PHP. PHPGGC is a library of
unserialize() payloads along with a command-line program.

• Can be used to generate deserialisation gadgets from known libraries that
people have already found.

• It has multiple deserialisation gadgets such as: CodeIgniter4, Doctrine,
Drupal7, Guzzle, Laravel, Magento, Monolog, Phalcon, Podio, Slim,
SwiftMailer, Symfony, WordPress, Yii, ZendFramework… etc etc etc…

• Full support to PHAR Deserialisation and generation of PHAR archives
and some PHAR polyglots ;-)

Past Vulnerabilities on DomPDF
• CVE-2022-28368 - RCE via Remote CSS Font Cache Installation (by

Positive Security) patched v1.2.1

• CVE-2021-3902 - Improper Restriction of XML External Entity Reference (by
Haxatron via Huntr.dev) patched v2.0.0

• CVE-2021-3838 - Deserialization of Untrusted Data (by Haxatron via
Huntr.dev) patched v2.0.0

• CVE-2022-2400 - External Control of File Name or Path (by Haxatron via
Huntr.dev) patched v2.0.0

• CVE-2022-0085 - Server-Side Request Forgery (by Haxatron via Huntr.dev)
patched v2.0.0

CVE-2022-28368 - RCE via Remote CSS Font Installation
Published by Positive Security

• Positive Security identified that when $isRemoteEnabled=true, DomPdf
can access remote font files and cache those files in disk using the
extension of the arbitrary font file.

• Those cached fonts are stored into /vendor/dompdf/dompdf/lib/fonts/
directory with the format: [font_name]_[font_weight]_[md5(src:url)].[ext]

• If the font cache directory is exposed to the internet, attackers can achieve
remote code execution creating a valid font with the extension .php and a
comment or copyright field (those are font properties) containing a
malicious PHP code to achieve RCE.

Lets have a look into the patch to CVE-2022-28368

Conclusions from the Patch (v1.2.1)
• It now forces the cached font to have the extension .ttf fixing the possibility

to achieve RCE… interesting… is that so huh!?

• What we can conclude from this patch:

• The main vulnerability was patched… cool… but…

• It doesn’t address the fact that arbitrary contents can still be present on
the font file. So, in theory a polyglot font would still be a valid font…

• It doesn’t address the fact that remote files are still being saved to disk
with a predictable filename. So, the arbitrary file upload still exists!

• Everyone is thinking the same as me now!?!? So… What if…

Using a Phar-TrueType Polyglot could work?

• In short YES! It’s possible to use the same vector on v1.2.1 but using Phar
deserialisation instead!

• If $isRemoteEnabled=true we can use the registerFont() method to write a
Polyglot TrueType Font + Phar to disk and simply invoke that file with:

• phar://path/to/vendor/dompdf/dompdf/lib/font/CACHED_FILE.ttf

• We don’t need public access to the vendor directory to exploit it this way.

• But then… while I was researching this, v2.0.0 was released patching other
vulnerabilities… including a protocol whitelist to fix phar:// deserialisation
exploitation. What brings us to CVE-2021-3838.

phar://path/to/vendor/dompdf/dompdf/lib/font/CACHED_FILE.ttf

CVE-2021-3838 - Deserialization of Untrusted Data
Published by Haxatron via Hunter.dev (previously reported in 2019 via a GitHub issue)

• Haxatron reported that Dompdf accepts the phar:// handler in multiple places where
URL are allowed to be included in the application. Funny enough, someone else had
already reported it to them back in 2019 but this issue was only addressed on v2.0.0
(a couple months ago).

•

• On Haxatron report he explicitly says that the a vulnerable application using DomPdf
would need to to have a upload functionality for this attack to work… But we already
know that DomPdf can do it for us right!? ;-)

Let’s see how registerFont() on v2.0.0 looks like…

Missing return false
statements?? Could that be

a mistake??

Let’s see how registerFont() on v2.0.0 looks like…

How Helper::getFileContent() looks like…

We have our trigger for phar://

Bonus: data:// will also work! :-D

CVE-2022-41343 - RCE via Phar Deserialisation
Published by Tanto Security

• The vulnerability uses the same entry point for CVE-2022-28368 since it was
poor patched and continues allowing "file upload".

• However, it works with $isRemoteEnable=false (since we can write our
payload to disk using data://) and exploitation doesn’t require public
access to the cached fonts directory /vendor/dompdf/dompdf/lib/fonts/.

• The Idea is to write a Polyglot TrueType-Phar file to the cached fonts
directory to bypass font validation and achieve RCE via the phar:// wrapper.

• Although, to achieve RCE, a Deserialisation Gadget Chain that results in
code execution is required. Otherwise, only using Dompdf code, is possible
to achieve arbitrary file deletion.

Payload for CVE-2022-41343

As the pwn Bible says… PoC||GTFO

